通常是monocle流程,也可以是diffusion map等等,我们以前其实分享过很多教程了。在文章里面主要是figures4F,图例是:F. Pseudo-time trajectory analysis of all myeloid cells with high variable genes.
Each dot represents a single cell and is colored according to their clustering in A.
The inlet t-SNE plot at each plot shows each cell with apseudo-time scorefrom dark blue to yellow, indicating early and terminal states, respectively.
如下:
GO和KEGG等生物学数据库注释
主要是在figures5D-E,图例是:D, E. Gene Ontology enrichment analysis results of each epithelial cell cluster in digestive organs (D) and non-digestive organs (E). Cell clustered as numbered below were colored according to their -log10P values. Only the top 20 significant terms (p-value < 0.05) were shown.这个虽然是个性化分析,但是在常规转录组里面已经烂大街了,需要注意的是GO和KEGG等生物学数据库条目非常多,如果生物学背景不够,大部分情况下是出图后就无动于衷。比如这篇文章就是有偏向的关注 GO Biological Processes ,而不是CC或者MF,甚至也不是KEGG数据库。
细胞通讯CellphoneDB
该工具算法正式发表于26 February 2020 ,链接是:https://www.nature.com/articles/s41596-020-0292-x ,代码在 https://github.com/Teichlab/cellphonedb ,流行程度尚可,所以写关于它教程的很多。重要就是给11种主要的细胞亚群,进行关系配对的计算。
CD4, CD4+ T cells;
CD8, CD8+ T cells
B, B cells
Plasma, plasma cells
Myeloid, myeloid cells
NK, NK cells
Epi, epithelial cells
Fib, fibroblasts
Smo, smooth muscle cells
FibSmo, FibSmo cells
Endo, endothelial cells)
Numbers in red indicate the counts of ligand-receptor pairs for each intercellular link.
使用SCENIC进行转录因子调控分析
SCENIC发表要早于前面的CellphoneDB,是2017年的Nature methods文章,链接: https://www.nature.com/articles/nmeth.4463 主要是根据表达矩阵来计算每个细胞可能的调控基因。图例是:F. Heatmap of the active scores ofepithelial cell subtypesas numbered on top, of which expression was regulated by transcription factors (TFs), as estimated using SCENIC analysis.Shown are the top 10 TFs having the highest difference in expression regulation estimates between each cluster and all other cells, tested with a Wilcoxon rank-sum test.